Pair-Distribution Functions of Composite Fermion Liquids

Arkadiusz Wójs*,†, Daniel Wodziński* and John J. Quinn†

*Wrocław University of Technology, 50-370 Wrocław, Poland
†University of Tennessee, Knoxville, Tennessee 37996, USA

Abstract. Pair-distribution functions $g(r)$ of Laughlin quasielectrons (QE’s) are calculated for the fractional quantum Hall liquids at electron filling factors $\nu = 4/11$ and $3/8$. They all have a shoulder at a medium range. The intra- and inter-cluster contributions to $g(r)$ are identified, supporting the idea of cluster formation (QE pairs at $\nu = 4/11$ and QE triplets at $\nu = 3/8$).

Keywords: composite fermion, fractional quantum Hall effect, pair-distribution function
PACS: 71.10.Pm, 73.43.-f

INTRODUCTION

Pan et al. [1] recently observed the fractional quantum Hall (FQH) effect in a spin-polarized two-dimensional electron gas (2DEG) at new electron filling factors $\nu = 4/11$ and $3/8$. These values correspond to $V_{\text{QE}} = \frac{1}{4}, \frac{1}{3}$, and $\frac{1}{2}$ of Laughlin quasielectrons (QE’s), respectively. In the composite fermion (CF) model [2], each QE corresponds to a particle in the second CF LL. Pan’s discovery implies that the CF’s (QE’s) can also form incompressible states when partially filling a LL. This could not be predicted by a simple analogy with known fractional electron liquids (Laughlin [3], Jain [2], or Moore–Read [4] states), because of a different form of the QE–QE interaction [5].

From numerical diagonalization on a sphere [6] we have obtained the energy spectra and wavefunctions of up to 14 interacting QE’s. We identified the series of finite-size liquid ground states with a gap, which extrapolate to the experimentally observed incompressible FQH states. In these states, we calculated QE–QE pair-distribution functions $g(r)$. They increase as $\sim r^2$ at short range and have a pronounced shoulder at a medium range. This behavior supports the idea of QE cluster formation, suggested earlier [7] from the analysis of QE–QE interaction pseudopotential. The $g(r)$ is decomposed into short- and long-range contributions, interpreted as correlations between the QE’s belonging to the same or to different clusters. The inter-cluster QE–QE correlations are nearly the same in all three $V_{\text{QE}} = \frac{1}{4}, \frac{1}{3}$, and $\frac{1}{2}$ states, but the cluster size depends on ν. That QE’s seem to form pairs at $V_{\text{QE}} = \frac{1}{4}$ and triplets at $V_{\text{QE}} = \frac{1}{2}$.

NUMERICAL DIAGONALIZATION

Following Haldane [6] we consider N particles of charge q on a spherical surface of radius R. Dirac monopole of strength $2Q$ placed in the center of the sphere is the source of magnetic field B, and $2Q \phi_0 = 4\pi R^2 B$. Here $\phi_0 = h/e$ is the elementary flux. Using the definition of the magnetic length, $\lambda = \sqrt{\hbar c/qB}$, this can be written as $\lambda^2 = R^2$. Here, λ denotes the QE magnetic length corresponding to the fractional QE charge of $q = -e/3$. The lowest Landau level (LL) has angular momentum $l = Q$ and degeneracy $\Gamma = 2l + 1$.

By diagonalizing the interaction Hamiltonian, we obtain energy as a function of total angular momentum L. We neglect scattering between CF-LL’s and include only the second, partially filled CF-LL. Interaction in this shell is given by the QE–QE pseudopotential $V_{\text{QE}}(\mathcal{R})$, where $\mathcal{R} = 2l - L$ is the relative pair angular momentum. V_{QE} is small at $\mathcal{R} = 1$ and large at $\mathcal{R} = 3$ [5, 8], in contrast to $e-e$ pseudopotential in the lowest LL, decreasing superlinearly as a function of \mathcal{R}. This difference precludes Laughlin correlations among QE’s.

Infinite incompressible states are represented on a sphere by combinations of N and Γ for which ground state has $L = 0$ and a significant gap. They form series with $2l = N/\nu - \gamma$, with a constant shift γ. E.g., Laughlin $\nu = \frac{1}{3}$ states occur for $2l = 3N - 3$. For QE’s, we find incompressible sequences at $2l = 3N - 7$ and $2N - 3$, corresponding to $V_{\text{QE}} = \frac{1}{4}$ and $\frac{1}{2}$, i.e., to $\nu = \frac{1}{11}$ and $\frac{1}{3}$.

PAIR-DISTRIBUTION FUNCTIONS

Pair-distribution functions $g(r)$ were calculated as the expectation values of $\hat{g}(r) = (2/N)^2 \delta(R\mathbf{\theta} - r)$ for the series of incompressible N-QE ground states. Here, θ is the relative angle on a sphere and r measures distance along the surface. Denoting infinitesimal area by $ds = 2\pi R^2 d(\cos \theta)$ or (in magnetic units) by $ds = dS/(2\pi \lambda^2)$, we get a normalization condition in large systems, $\int [1 - g(r)] ds = 2l/N \rightarrow v^{-1}$. Since $ds = dS/(\cos \theta)$, a “local filling factor” can also be defined as $v(r) = dN/ds = (N/2l) g(r)$, satisfying $v(\infty) = v$ and $\int v(r) ds = N - 1$.

CP850, Low Temperature Physics: 24th International Conference on Low Temperature Physics; edited by Y. Takano, S. P. Hershfield, S. O. Hill, P. J. Hirschfeld, and A. M. Goldman
© 2006 American Institute of Physics 0-7354-0347-3/06/$23.00

1353
cluster QE–QE correlations we decompose cluster formation [7, 10, 11]. To find inter- and intra-cluster correlations do not affect local filling factor at short range, so that \(\nu(r) \approx \nu_{K}(r) \) for small \(r \). Here, \(\nu_{K}(r) \) describes a single \(K \)-cluster, or the \(K \)-particle state with the maximum total angular momentum \(L = K! - \frac{1}{2}K(K-1) \). We have calculated \(g_{K}(r) \) and then prefactors \(\beta_{K} = \lim_{r \to 0} \nu_{K}(r)/g_{0}(r) \) for different \((K,2l) \). For example, for \(2l = 25 \), \(\beta_{2} = 0.2768 \) and \(\beta_{3} = 0.4196 \). These values are to be compared with \(\beta = (N/2l) \alpha \) obtained for the incompressible \(N \)-QE systems.

The assumption of cluster independence is only an approximation. To test it we use a paired Moore–Read state [4, 13]. For \(N = 14 \) and \(2l = 25 \) we got \(\beta_{MR} = 0.336 \), somewhat larger than \(\beta_{2} \). This suggests that \(\beta_{K} \) underestimates \(\beta \) in a many-body \(K \)-clustered state.

For the QEs, \(\beta \approx 0.319 \approx \beta_{MR} \) at \(\nu_{QE} = \frac{1}{5} \) \((N = 14 \) and \(2l = 25) \). These values suggest that QE’s form pairs and triplets at \(\nu_{QE} = \frac{1}{5} \) and \(\frac{1}{3} \), respectively.

CONCLUSION

We studied QE–QE pair-distribution functions \(g(r) \) of new FQH states at \(\nu = \frac{1}{11} \) and \(\frac{1}{8} \). They differ from these known for electrons at \(\nu = \frac{1}{11} \) or \(\frac{1}{8} \) by having a shoulder at \(r \approx 2.5\lambda \). Short- and long-range contribution to \(g(r) \), describing intra- and inter-cluster correlations among the QE’s were found. The results support the idea of QE clustering (into pairs at \(\nu = \frac{1}{11} \) or triplets at \(\nu = \frac{1}{8} \)).

ACKNOWLEDGMENTS

The authors thank W. Pan, W. Bardyszewski, and L. Bryja for helpful discussions. Work supported by Grants DE-FG-02-97ER45657 of the U.S. Dept. of Energy and 2P03B02424 of the Polish MENiŚ.

REFERENCES

1. W. Pan, H. L. Störmer, D. C. Tsui, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 90, 016801 (2003); \(\nu = 7/11 \) state was found by V. J. Goldman and M. Shayegan [Surface Sci. 229, 10 (1990)].